Bilimlar bellashuvi va olimpiadalar

Olimpiada XII tur yechimlari (5-sinf)

Siz bu yerda saytimizda muntazam chop etilib kelinayotgan matematika fanidan 5-sinf o’quvchilariga mo’ljallangan «Olimpiada XII tur» masalalari yechimlari va izohlari bilan tanishishingiz mumkin.

Javoblar:

1)  Yechish: Agar yig’indisi 17 dan kichik bo’lgan sonlar ichida eng katta ko’paytma 8· 8 bo’ladi.Demak, ularning ko’paytmasi 64 dan kichik bo’ladi.

2) Yechish:

1+2+3+ …+9=45 dan foydalansak,;

Javob: 330.

3) ;  3(13-x)= 2(17-x); 39-3x=34-2x; -x= -5; x=5;  Javob: 5 ni

4) Yechish:

Buning uchun har bir ranglarni 3 ga bo’lishdagi qoldiqni hisoblaymiz. 7=3· 2+1;12= 3· 4+0; 11=3 ·3+2; Demak, dastlab qoldiqlar (1;0;2) ko’rinishda bo’ladi.Ikkita hameleonning 1-uchrashuvidan song (qanday har-xil rangda bo’lishidan qat’iy nazar) qoldiqlar uchligi (0;2;1); 2-  (2;1;0), 3-dan keyin (1;0;2) va hokazo.Ko’rinib turibdiki (0;0;0) kombinatsiya vujudga kelmaydi. Javob: Yo’q

5) Yechish: 10 soatda S masofani V1 tezlik bilan; 8 soatda S masofani V2 tezlik bilan.     Javob: 25 %

6) Javob: 25 ta

7) Yechish: Yo’q mumkin emas, chunki  n=17 da murakkab son bo’ladi.

8) Yechish: Sonni 100 ga bo’lganda quyidagicha qoldiqlar qoladi: 0,1,2,3,…,99.Shunga ko’ra 101 ta son ichidan 100ga bo’lganda bir xil qoldiq qoladigan ikkita son topiladi.Bundan ularning ayirmasi 100ga bo’linadi.

9) Javob: n>6

10) Yechish: Aytaylik r1 n2 ni 19 ga bo’lgandagi qoldiq bo’lsin.r2 esa 2n ni 19 ga bo’lgandagi qoldiq bo’lsin.n2+2n yig’indi 19 ga bo’linishi uchun qoldiqlar yig’indisi 19 bo’linishi kerak, demak.Jadval tuzamiz:

Jadvaldan ko’rinib turibdiki, n=5.

Javob: n=5.

Muallif haqida

Foziljon Anapiyayev

Andijon viloyati, Baliqchi tumani.
O‘zbekiston xalq ta’limi a’lochisi
Xozirda nafaqada.

16 ta fikr

Fikr bildiring

This site uses Akismet to reduce spam. Learn how your comment data is processed.